
Journal of Geometry and Physics 56 (2006) 1752–1766

Killing forms on G2- and Spin7-manifolds

Uwe Semmelmann∗
Fachbereich Mathematik, Universität Hamburg, Bundesstr. 55, D-20146 Hamburg, Germany

Received 1 December 2004; received in revised form 21 September 2005; accepted 12 October 2005
Available online 1 December 2005

Abstract

Killing forms on Riemannian manifolds are differential forms whose covariant derivative is totally skew-
symmetric. We prove that on a compact manifold with holonomy G2 or Spin7 any Killing form has to be
parallel. The main tool is a universal Weitzenböck formula. We show, how such a formula can be obtained
for any given holonomy group and any representation defining a vector bundle.
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1. Introduction

Killing forms are a natural generalization of Killing vector fields. They are defined as differen-
tial forms u, such that ∇u is totally skew-symmetric. More generally one considers twistor forms,
as forms in the kernel of an elliptic differential operator, defined similarly to the twistor operator
in spin geometry. Twistor 1-forms are dual to conformal vector fields. Killing forms are coclosed
twistor forms.

The notion of Killing forms was introduced by Yano in [17], where he already noted that a
p-form u is a Killing form if and only if for any geodesic γ the (p− 1)-form γ̇� u is parallel
along γ . In particular, Killing forms define quadratic first integrals of the geodesic equation, i.e.
functions, which are constant along geodesics. This motivated an intense study of Killing forms
in the physics literature, e.g. in the article of Penrose and Walker [12]. More recently, Killing and
twistor forms have been successfully applied to define symmetries of field equations (cf. [4,5]).
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On the standard sphere, the space of twistor forms coincides with the eigenspace of the Laplace
operator for the minimal eigenvalue and Killing forms are the coclosed minimal eigenforms. The
sphere also realizes, the maximal possible number of twistor or Killing forms. So far, there are
only very few further examples of compact manifolds admitting Killing p-forms with p ≥ 2.
These are Sasakian, nearly Kähler and weak-G2 manifolds, and products of them. The Killing
p-forms of these examples satisfy an additional equation and it turns out that they are in 1-1
correspondence to parallel (p+ 1)-forms on the metric cone. In particular, they only exist on
manifolds with Killing spinors (cf. [2,13]).

The present article is the last step in the study of Killing forms on manifolds with restricted
holonomy. It was already known that on compact Kähler manifolds Killing p-forms with p ≥ 2
are parallel [16]. Moreover, we showed in Ref. [11,3] that the same is true on compact quaternion-
Kähler manifolds and compact symmetric spaces. Here, we will prove the corresponding statement
for the remaining holonomies G2 and Spin7.

The Hodge ∗-operator preserves the space of twistor forms. In particular, it maps Killing forms
to closed twistor forms, which we will call ∗-Killing forms.

Theorem 1.1. Let (M7, g) be a compact manifold with holonomy G2. Then, any Killing form
and any ∗-Killing form is parallel. Moreover, any twistor p-form, with p �= 3, 4, is parallel.

Theorem 1.2. Let (M8, g) be a compact manifold with holonomy Spin7. Then, any Killing form
and any ∗-Killing form is parallel. Moreover, any twistor p-form, with p �= 3–5, is parallel.

The main tool for proving the two theorems are suitable Weitzenböck formulas for the ir-
reducible components of the form bundle. More generally, we prove a universal Weitzenböck
formula, i.e. we show, how to obtain for any fixed holonomy group G and any irreducible G-
representation π, a Weitzenböck formula for certain first order differential operators acting on
sections of the vector bundle defined by π. Our formula is already known in the case of Rieman-
nian holonomy SOn (cf. [8]). However, it seems to be new and so far unused in the case of the
exceptional holonomies G2 and Spin7. We describe, here, an approach to Weitzenböck formulas
which, is further developed and completed in Ref. [15].

2. Twistor forms on Riemannian manifolds

In this section, we recall the definition and basic facts on twistor and Killing forms. More
details and further references can be found in Ref. [13]. Most important for the later application
will be the integrability condition given in Proposition 2.2.

Consider a n-dimensional Euclidean vector space (V, 〈·, ·〉). Then, the tensor product V ∗ ⊗
ΛpV ∗ has the following O(n)-invariant decomposition:

V ∗ ⊗ΛpV ∗ ∼= Λp−1V ∗ ⊕Λp+1V ∗ ⊕Λp,1V ∗,

where Λp,1V ∗ is the intersection of the kernels of wedge and inner product. This decomposition
immediately translates to Riemannian manifolds (Mn, g), where we have:

T ∗M ⊗ΛpT ∗M ∼= Λp−1T ∗M ⊕Λp+1T ∗M ⊕Λp,1T ∗M, (1)

withΛp,1T ∗M denoting the vector bundle corresponding to the representationΛp,1. The covariant
derivative ∇ψ of a p-form ψ is a section of T ∗M ⊗ΛpT ∗M. Its projections onto the summands
Λp+1T ∗M and Λp−1T ∗M are just the differential dψ and the codifferential d∗ψ. Its projection
onto the third summand Λp,1T ∗M defines a natural first order differential operator T, called the
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twistor operator. The twistor operator T : Γ (ΛpT ∗M) → Γ (Λp,1T ∗M) ⊂ Γ (T ∗M ⊗ΛpT ∗M)
is given for any vector field X by the following formula:

[Tψ](X) := [prΛp,1 (∇ψ)](X) = ∇Xψ − 1

p+ 1
X � dψ + 1

n− p+ 1
X∗ ∧ d∗ψ. (2)

From now on, we will identify TM with T ∗M using the metric.

Definition 2.1. A p-form ψ is called a twistor p-form if and only if ψ is in the kernel of T, i.e. if
and only if ψ satisfies:

∇Xψ = 1

p+ 1
X � dψ − 1

n− p+ 1
X ∧ d∗ψ, (3)

for all vector fields X. If the p-form ψ is in addition coclosed, it is called a Killing p-form. A
closed twistor form is called ∗-Killing form.

Twistor forms are also known as conformal Killing forms or skew-symmetric Killing-Yano
tensors. Twistor 1-forms are dual to conformal vector fields and Killing 1-forms are dual to Killing
vector fields. Note that the Hodge star-operator ∗ maps twistor p-forms into twistor (n− p)-forms.
In particular, it interchanges Killing and ∗-Killing forms.

Twistor forms are well understood on compact Kähler manifolds (cf. [10]). Here, they are
closely related to Hamiltonian 2-forms recently studied in Ref. [1]. In particular, one has examples
on the complex projective space in any even degree.

Differentiating Eq. (2), one obtains the two equations:

∇∗∇ψ = 1

p+ 1
d∗ dψ + 1

n− p+ 1
d d∗ψ + T ∗Tψ, (4)

q(R)ψ = p

p+ 1
d∗ dψ + n− p

n− p+ 1
d d∗ψ − T ∗Tψ, (5)

where q(R) is the curvature term appearing in the classical Weitzenböck formula for the Laplacian
on p-forms: � = d∗d + dd∗ = ∇∗∇ + q(R). It is the symmetric endomorphism of the bundle of
differential forms defined by:

q(R) =
∑

ej ∧ ei �Rei,ej , (6)

where {ei} is any local orthonormal frame and Rei,ej denotes the curvature of the form bundle.
On 1-forms the endomorphism q(R) is just the Ricci curvature. It is important to note that one
may define q(R) also in a more general context. For this, we first, rewrite Eq. (6) as:

q(R) =
∑
i<j

(ej ∧ ei � − ei ∧ ej � )Rei,ej =
∑
i<j

(ei ∧ ej)R(ei ∧ ej),

where the Riemannian curvature R is considered as element of Sym2(Λ2TM) and 2-forms act
via the standard representation of the Lie algebra so(TmM) ∼= Λ2TmM on the space of p-forms.
Note that we can replace {ei ∧ ej} by any basis of so(TmM) orthonormal with respect to the scalar
product induced by g on so(TmM) ∼= Λ2TmM.

Let (M,g) be a Riemannian manifold with holonomy group G = Hol. Then, the curvature
tensor takes values in the Lie algebra g of the holonomy group and we can write q(R) as:

q(R) =
∑

XiR(Xi),
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where {Xi} is any orthonormal basis of g acting via the form representation restricted to the
holonomy group. It is clear that in this way q(R) gives rise to a symmetric endomorphism on
any associated vector bundle defined via a representation of the holonomy group. Moreover,
this bundle endomorphism preserves any parallel sub-bundle and its action only depends on the
representation defining the sub-bundle and not on the particular realization (cf. [13,14]).

Integrating Eq. (5), yields a characterization of twistor forms on compact manifolds. This,
generalizes the characterization of Killing vector fields on compact manifolds, as divergence free
vector fields in the kernel of �− 2Ric.

Proposition 2.2. Let (Mn, g) a compact Riemannian manifold. Then, a p-form ψ is a twistor
p-form, if and only if q(R)ψ = p

p+1 d∗ dψ + n−p
n−p+1 d d∗ψ. A coclosed p-form ψ is a Killing form

if and only if ∇∗∇ψ = 1
p
q(R)ψ. A closed p-form ψ is a ∗-Killing form if and only if ∇∗∇ψ =

1
n−pq(R)ψ. If n = 2m, then, a m-form ψ is a twistor form if and only if ∇∗∇ψ = 1

m
q(R)ψ.

For the later application, in the case of compact Ricci-flat manifolds, we still mention an
immediate consequence of Eq. (5).

Corollary 2.3. Let M be a compact manifold and let EM ⊂ ΛpT ∗M be a parallel sub-bundle
such that q(R) acts trivially on EM. Then, any twistor and any harmonic form in EM has to be
parallel.

Manifolds with holonomy G2 or Spin7 are Ricci-flat. Hence, q(R) vanishes on all bundles
where it reduces to Ricci or scalar curvature.

Proposition 2.4. Let (M7, g) be a manifold with holonomy G2. Then, q(R) acts trivially on any
bundle of rank less or equal to 7. Let (M8, g) be a manifold with holonomy Spin7. Then, q(R)
acts trivally on any bundle of rank less or equal to 8.

Proof. Of course, q(R) acts trivially on any bundle defined by a trivial representation. For the
holonomy group G2, the seven-dimensional holonomy representation is the smallest possible
non-trivial representation. On the corresponding bundle q(R) acts as Ricci curvature and, thus,
vanishes.

For the holonomy group Spin7, we have the eight-dimensional holonomy representation and
the seven-dimensional standard representation as smallest possible non-trivial representations. In
both cases, q(R) acts trivially: the spinor bundle of a manifold with Spin7-holonomy splits into
the sum of a trivial line bundle, corresponding to the parallel spinor, and the sum of a bundle of
rank 7 and a bundle of rank 8. These two bundles are induced by the eight-dimensional holonomy
representation and by the seven-dimensional standard representation. It is well known that q(R)
acts as s

16 id on the summands of the spinor bundle (cf. [14]). But, for Spin7-manifolds the scalar
curvature s is zero and we conclude that q(R) acts trivially on the bundles in question. �

3. A universal Weitzenböck formula

In this section, we derive for any manifold with a fixed holonomy one basic Weitzenböck
formula. The coefficients of this formula will depend on the holonomy group and the defining
representation. This is only the first step of a more general method of producing all possible
Weitzenböck formulas on such manifolds (cf. [15]).

We consider the following situation: let (Mn, g) be an oriented Riemannian manifold with
holonomy group G := Hol(M,g) ⊂ SO(n). Then, the SO(n)-frame bundle reduces to a G-
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principal bundle PG → M and all natural bundles over M are associated to PG via representations
of G.

If π : G → Aut(E) is a representation of G, we denote with EM the corresponding associated
bundle over M. In particular, we will denote the holonomy representation of G, given by the inclu-
sion G ⊂ SO(n), with T. The associated vector bundle is then, of course, the tangent bundle TM.
For simplifying the notation, we will also write T for the complexified holonomy representation,
which then defines the complexified tangent bundle TM.

The Levi-Civita connection of (M,g) induces a connection ∇ on any bundle EM and the
covariant derivative of a section of EM is a section of TM ⊗ EM. Hence, we may define natural
first order differential operators by composing the covariant derivative with projections onto the
components of TM ⊗ EM. These operators are also known as Stein-Weiss operators.

Let T ⊗ E = ∑
Ei be the decomposition of T ⊗ E into irreducible G-representations, where

we considerEi as a subspace of T ⊗ E. This induces a corresponding decomposition of the tensor
product TM ⊗ EM. For any component EiM, we define an operator Ti by:

Ti : Γ (EM) → Γ (EiM), Ti(ψ) := pri(∇ψ),

where pri denotes the projection T ⊗ E → Ei ⊂ T ⊗ E and the corresponding bundle map. In
the following, we will make no difference between representations resp. equivariant maps and the
corresponding vector bundles resp. bundle maps.

Since we are on a Riemannian manifold, we have for any Ti its formal adjoint T ∗
i : Γ (EiM) →

Γ (EM). The aim of this section is to derive a Weitzenböck formula for the second order operators
T ∗
i ◦ Ti, i.e. a linear combination

∑
i ciT

∗
i ◦ Ti with real numbers ci, which is of zero order, i.e. a

curvature term. The coefficients ci will depend on the holonomy group G and the representation
E.

Our approach to Weitzenböck formulas, further developed in Ref. [15], is motivated by the
following remarks. Letψ be any section of EM, then, ∇2ψ is a section of the bundle TM ⊗ TM ⊗
EM. Any G-equivariant homomorphism F ∈ HomG(T ⊗ T ⊗ E,E) defines byψ �→ F (∇2ψ) a
second order differential operator acting on sections of EM. For describing these homomorphisms,
it is rather helpful to use the natural identifications:

HomG(T ⊗ T ⊗ E,E) ∼= EndG(T ⊗ E) ∼= HomG(T ⊗ T,EndE).

A homomorphisms F : T ⊗ T → EndE is mapped onto the endomorphism F of T ⊗ E de-
fined by F (a⊗ s) = ∑

ei ⊗ Fei⊗a(s), for any orthonormal basis {ei} of T and any a ∈ T, s ∈ E.
Conversely, an endomorphism F is mapped to the homomorphism F withFa⊗b(s) = a �F (b⊗ s).
In particular, the identity of T ⊗ E is mapped onto ida⊗b = g(a, b)idE. Finally, F ∈ Hom (T ⊗
T ⊗ E,E) is defined as F (a⊗ b⊗ s) = Fa⊗bs.

Beside the identity idT⊗E, we have the projections pri : T ⊗ E → Ei ⊂ T ⊗ E as important
examples of invariant endomorphisms. The following proposition describes the corresponding
second order differential operators.

Proposition 3.1. Let T ⊗ E = ∑
Ei the decomposition into irreducible summands, with corre-

sponding operators Ti. Then, any section ψ of EM satisfies:

id(∇2ψ) = −∇∗∇ψ, (1′)

pri(∇2ψ) = −T ∗
i Ti (ψ). (2′)

Proof. Let {ei} be a parallel local ortho-normal frame of TM, then, ∇2 = ∑
ei ⊗ ej ⊗ ∇ei∇ej

and id(∇2ψ) = ∑
g(ei, ej)∇ei∇ejψ = −∇∗∇ψ, which proves Eq. (1′).
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Eq. (2′)is a direct consequence of the following more general statement. �
Lemma 3.2. Let (M,g) be a Riemannian manifold and letE,F be hermitian vector bundles over
M, equipped with metric connections ∇. If D : Γ (E) → Γ (F ) is a differential operator defined
as D = p ◦ ∇, where p : TM ⊗ E → F is some parallel linear map. Then, the adjoint operator
for D is D∗ = ∇∗ ◦ p∗ and D∗D = −tr ◦ (id ⊗ p∗p)∇2.

The second equation follows with F = TM ⊗ EM and an orthogonal projection p = pri onto
a sub-bundle EMi ⊂ TM ⊗ EM. Indeed, in this case we have p∗p = p2 = p and it follows
(Ti)Tiψ = −tr ◦ (id ⊗ pri)∇2ψ = −pri(∇2ψ).

We will now prove the lemma. Note, that the formal adjoint ∇∗ of the covariant derivative
∇ : Γ (E) → Γ (TM ⊗ E) is given as the composition of the following differential operators:

Γ (TM ⊗ E)
∇→Γ (TM ⊗ TM ⊗ E)

−tr→Γ (E), where ∇ also denotes the tensor product connection,
i.e. ∇ := ∇ ⊗ id + id ⊗ ∇. Since D is defined asD = p ◦ ∇ we haveD∗ = (p ◦ ∇)∗ = ∇∗ ◦ p∗,
thus, D∗D = (p ◦ ∇)∗(p ◦ ∇) = ∇∗ ◦ p∗p ◦ ∇. Since p is a parallel map it commutes with ∇∗.
Hence, we can substitute the formula for ∇∗ to obtain D∗D = ∇∗ ◦ p∗p ◦ ∇ = −tr ◦ ∇ ◦ p∗p ◦
∇ = −tr ◦ (id ⊗ p∗p) ◦ ∇2.

Since we obviously have id = ∑
pri, the proposition above immediately implies a rather useful

formula for the operator ∇∗∇, which corresponds to Eq. (4) in the caseG = SOn and E = ΛpT .

Corollary 3.3. ∇∗∇ = ∑
i T

∗
i ◦ Ti

Let G be the holonomy group of an irreducible, non-symmetric Riemannian manifold. It is,
then, well known that any isotypic component of T ⊗ E is irreducible, i.e. in the decomposition
T ⊗ E = ∑

Ei any summand Ei occurs only once (cf. [7]). As a consequence, the projection
maps {pri} form a basis of EndG(T ⊗ E) and any invariant endomorphism F of T ⊗ E can be
written as F = ∑

fipri, with F |Ei = fiid.
It turns out that for certain invariant endomorphisms F the operatorF ◦ ∇2 is in fact a zero order

term. Hence, in these cases F gives rise to the Weitzenböck formula F ◦ ∇2 = − ∑
fiT

∗
i Ti. The

following lemma provides us with a simple criterion for deciding which invariant endomorphisms
F lead to Weitzenböck formulas.

Lemma 3.4. Let F be an equivariant endomorphism of T ⊗ E considered as element of
HomG(T ⊗ T,EndE). Then, F ◦ ∇2 defines a zero order operator if and only if Fa⊗b = −Fb⊗a
for any vectors a, b ∈ T .

Proof. Let R be the curvature of EM and let {ei} be a parallel local frame, then:

F ◦ ∇2 =
∑

F (ei ⊗ ej)∇ei∇ej = 1

2

∑
F (ei ⊗ ej)(∇ei∇ej − ∇ej∇ei )

= 1

2

∑
F (ei ⊗ ej)Rei,ej . �

We show in Ref. [15] that EndG(T ⊗ E) is in many cases, including the exceptional holonomies
G2 and Spin7, the quotient of a polynomial algebra generated by one special endomorphism, the
conformal weight operator B.

Definition 3.5. The conformal weight operator B ∈ EndG(T ⊗ E) ∼= HomG(T ⊗ T,EndE) is
for any a, b ∈ T, s ∈ E defined as:

Ba⊗bs := prg(a ∧ b)s,
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where g is the Lie algebra of the holonomy group G and prg denotes the projection Λ2T → g ⊂
son ∼= Λ2T . Here, g acts via the differential of the representation π on E.

However, for the present article, it is only important to note that B defines a Weitzenböck
formula, since obviously Ba⊗b = −Bb⊗a, for any a, b ∈ T . We will later apply this formula for
proving that any Killing form on a compact manifold with exceptional holonomy has to be parallel.

The curvature term defined by B turns out to be the endomorphism q(R) already introduced in
Section 2. In fact, Eq. (5) can be considered as the Weitzenböck formula corresponding to B in
the special case of G = SOn and E = ΛpT .

Lemma 3.6. B ◦ ∇2 = q(R)

Proof. Let {Xi} be an ortho-normal basis for the induced scalar product on g ⊂ Λ2T and let {ei}
be a local ortho-normal frame. Then:

B ◦ ∇2 =
∑

prg(ei ∧ ej)∇2
ei,ej

= 1

2

∑
prg(ei ∧ ej)(∇2

ei,ej
− ∇2

ej,ei
)

=
∑
i<j

prg(ei ∧ ej)Rei,ej =
∑

Xi · R(Xi) = q(R). �

In order to obtain the general Weitzenböck formula defined by B, we have to writeB = ∑
bipri

and to determine the coefficients bi. We, first, describe the conformal weight operator as an element
of EndG(T ⊗ E).

Lemma 3.7. Let {Xi} be an orthonormal basis for the induced scalar product on g ⊂ Λ2T .
Then, B = − ∑

Xi ⊗Xi, where Xi is acting on T resp. E via the holonomy representation resp.
the representation E.

Proof. Using the formula 〈X, a ∧ b〉 = 〈Xa, b〉, for a, b ∈ T andX ∈ Λ2T ∼= son, we may write
B as:

B(a⊗ s) =
∑

ei ⊗ prg(ei ∧ a)s =
∑

ei ⊗ 〈ei ∧ a,Xj〉Xjs

=
∑

〈Xjei, a〉ei ⊗Xjs = −
∑

〈ei, Xja〉ei ⊗Xjs

= −
(∑

Xj ⊗Xj

)
a⊗ s. �

Let G be a compact semi-simple Lie group, with Lie algebra g and let π : G → Aut(V ) be
a representation of G on the complex vector space V. If {Xi} is a basis of g, orthonormal with
respect to an invariant scalar product g, the Casimir operator Casgπ ∈ End (V ) is defined as:

Casgπ :=
∑

π∗(Xi) ◦ π∗(Xi) =
∑

X2
i ,

where π∗ : g→ End (V ) denotes the differential of the representation π. It is well-known that
Casgπ = c

g
πidV , if the representation π is irreducible. Moreover, the Casimir eigenvalues cgπ can

be expressed in terms of the highest weight of π.
It follows from the lemma above that the conformal weight operator B can be written as a

linear combination of Casimir operators, which leads to the next corollary.
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Corollary 3.8. Let T ⊗ E = ⊕Ei be the decomposition of the tensor product into irreducible
components. Then, the conformal weight operator B is given as:

B =
∑

bipri with bi = 1
2

(
cΛ

2

T + cΛ
2

E − cΛ
2

Ei

)
, (7)

for Casimir eigenvalues cΛ
2

π computed with respect to the induced scalar product on g ⊂ Λ2T .
The corresponding universal Weitzenböck formula on sections of EM is:

q(R) = −
∑

biT
∗
i Ti. (8)

Proof. Expanding the Casimir operator CasΛ
2

T⊗E = ∑
X2
i acting on T ⊗ E, we obtain:

CasΛ
2

T⊗E =
∑ (

X2
i ⊗ idE + 2Xi ⊗Xi + idT ⊗X2

i

)
.

Hence, Lemma 3.7 implies that the conformal weight operator can be written as:

B = − 1
2

(
CasΛ

2

T⊗E − CasΛ
2

T ⊗ idE − idT ⊗ CasΛ
2

E

)
,

which yields the formula above after restriction to the irreducible components Ei. �

Remark 3.9. In the case of Riemannian holonomy G = SOn the Weitzenböck formula (8) was
considered for the first time in Ref. [8]. In this article, one can also find the conformal weight
operator and its expression in terms of Casimir operators. The operator B appears also in Ref. [6].
Similar results can be found in Ref. [9].

It remains to compute the Casimir eigenvalues. For doing so, we first, recall how to compute
them for an irreducible representation of highest weight λ and with respect to the scalar product
(·, ·) defined by the Killing form B. Let ρ be the half sum of the positive roots of g, then:

cBπ = ‖ρ‖2 − ‖λ+ ρ‖2 = −(λ, λ+ 2ρ). (9)

For the application of Corollary 3.8, we need the Casimir eigenvalues cΛ
2

π defined with respect
to the induced scalar product on g ⊂ Λ2T . The relation between these Casimir eigenvalues is
contained in the following normalization lemma, which we will apply in the case V = T .

Lemma 3.10. Let g be the Lie algebra of a compact simple Lie group and let V be an irre-
ducible real g-representation with invariant scalar product 〈·, ·〉. If π is any other irreducible
g-representation with invariant scalar product g, then:

cΛ
2

π = −2
dim g

dim V

1

c
g
V

cgπ,

where cΛ
2

π denotes the Casimir eigenvalue with respect to the scalar product induced by 〈·, ·〉
on g ⊂ so(V ) ∼= Λ2V . In particular, the Casimir eigenvalue of the representation V is given as
cΛ

2

V = −2 dim g
dim V

.

Proof. Since we assume V to be equipped with a invariant scalar product 〈·, ·〉 we have
g ⊂ so(V ) ∼= Λ2V . Restricting the induced scalar product onto g ⊂ Λ2V defines the natural
scalar product 〈·, ·〉Λ2 on g. Note that 〈α, β〉Λ2 = − 1

2 trV (α ◦ β) = 1
2 〈α, β〉EndV . Let {Xa} be an
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orthonormal basis of g with respect to 〈·, ·〉Λ2 and let {ei} be an orthonormal basis of V. Then,

CasΛ
2

V (v) = cΛ
2

V v = ∑
a X

2
a(v), for any v ∈ V , and we obtain:

dim VcΛ
2

V =
∑
a,j

〈X2
a(ej), ej〉 = −

∑
a,j

〈Xa(ej), Xa(ej)〉 = −2
∑

|Xa|2Λ2 = −2 dim g,

which proves the lemma in the case π = V . Since g is a simple Lie algebra it follows that
two Casimir operators defined with respect to different scalar products differ only by a factor

independent from the irreducible representation π. Hence, c
Λ2
π

c
g
π

= cΛ
2

V

c
g

V

and the statement of the

lemma follows from the special case π = V . �
In the remaining part of this section, we will consider the holonomy groupsG2 and Spin7 and

make the Weitzenböck formula (8) explicit for certain representations appearing in the decompo-
sition of the form spaces.

3.1. The group G2

The group G2 ⊂ SO(7) is a compact simple Lie group of dimension 14 and of rank 2. As
fundamental weights one usually considers ω1 corresponding to the seven-dimensional holon-
omy representation T and ω2 corresponding to the 14-dimensional adjoint representation g2.
The half-sum of positive roots is the sum of the fundamental weights, i.e. ρ = ω1 + ω2. Any
other irreducible G2-representation can be parameterized as Γa,b = aω1 + bω2, e.g. the trivial
representation is Γ0,0 = C. Further examples are:

Γ0,1 = Λ2
14 = g2, Γ2,0 = Λ3

27, Γ1,1 = V64, Γ3,0 = V−
77,

where the subscripts denote the dimension of the representation, which is unique up to dimension
77. In dimension 77 on, it has two irreducibleG2-representations, denoted by V+

77 and V−
77. Below,

we need the following decomposition of the spaces of 2- and 3-forms:

Λ2T ∼= Λ5T ∼= T ⊕Λ2
14, Λ3T ∼= Λ4T ∼= C ⊕ T ⊕Λ3

27. (10)

Since we want to apply the Weitzenböck formula for the bundles Λ2
14T and Λ3

27T we still need
the following tensor product decompositions:

T ⊗Λ2
14

∼= T ⊕Λ3
27 ⊕ V64, T ⊗Λ3

27
∼= T ⊕Λ4

27 ⊕Λ2
14 ⊕ V64 ⊕ V−

77. (11)

There is a suitable invariant bilinear form g on g2, which induces the scalar products:

g(ω1, ω1) = 1, g(ω2, ω2) = 3, g(ω1, ω2) = 3
2 .

The invariant bilinear form g is some multiple of the Killing form B and it follows for the Casimir
eigenvalues that cgπ = λcBπ , with some universal constant λ. This constant cancels in the formula

for cΛ
2

π given in Lemma 3.10. Thus, we may use Eq. (9) and Lemma 3.10 for obtaining the
following Casimir eigenvalues:

cΛ
2

Γa,b
= − 2

3 (a2 + 3b2 + 3ab+ 5a+ 9b).

In particular, we have, cΛ
2

Λ3
27

= − 28
3 , c

Λ2

Λ2
14

= −8, cΛ
2

T = −4, cΛ
2

V64
= −14, cΛ

2

V−
77

= −16. The con-

stant λ can be determined by noting that the Casimir eigenvalue of the adjoint representation
computed with respect to the Killing form B is always −1.
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Finally, we use (7) to obtain the Weitzenböck formula on the bundlesΛ2
14 andΛ3

27. Recall that
the operator Ti is the projection of the covariant derivative onto the ith summand in the tensor
product decomposition of T ⊗ E, i.e. we will number the operators Ti according to the numbering
of the summands in this decomposition, which has to be fixed in order to make the notation unique.

Here, we will consider the tensor product decomposition given in (11), e.g. in the case of the
representation Λ2

14 the operator T3 denotes the projection of the covariant derivative onto the
summand V64, whereas for the representation Λ3

27 the operator T3 denotes the projection of the
covariant derivative onto the summand Λ2

14.

Proposition 3.11. The operators Ti defined corresponding to the decompositions in (11) satisfy
the following Weitzenböck formulas:

on Λ2
14 : q(R) = 4T ∗

1 T1 + 4
3T

∗
2 T2 − T ∗

3 T3,

on Λ3
27 : q(R) = 14

3 T
∗
1 T1 + 2T ∗

2 T2 + 8
3T

∗
3 T3 − 1

3T
∗
4 T4 − 4

3T
∗
5 T5.

3.2. The group Spin7

Let ±e1,±e2,±e3 and 0 be the weights of the seven-dimensional standard representation of
Spin7. Then, the fundamental weights may be expressed as:

ω1 = e1, ω2 = e1 + e2, ω3 = 1
2 (e1 + e2 + e3),

corresponding to the representations Λ1
R

7,Λ2
R

7 and the spin representation. All other irre-
ducible Spin7-representations are parameterized as Γa,b,c = aω1 + bω2 + cω3. The half-sum of
positive roots is given as ρ = ω1 + ω2 + ω3 = 5

2e1 + 3
2e2 + 1

2e3.
The holonomy group Spin7 is considered as subgroup of SO8 such that the holonomy repre-

sentation T is given by the eight-dimensional spin representation, i.e. T = Γ0,0,1. This leads to
the following decompositions of the form spaces ΛkT ,

Λ2T ∼= Λ2
7 ⊕Λ2

21, Λ3T ∼= Λ3
8 ⊕Λ3

48, Λ4T ∼= Λ4
1 ⊕Λ4

7 ⊕Λ4
27 ⊕Λ4

35. (12)

Again, the subscripts denote the dimensions of the representations and of course we haveΛ2
7

∼= Λ4
7

andΛ3
8 = T . For the investigation of forms on Spin7-manifolds, we need Weitzenböck formulas on

the bundles corresponding toΛ2
21,Λ

3
48,Λ

4
27 andΛ4

35. The decompositions of the tensor products
T ⊗ E are given as:

T ⊗Λ2
21

∼= T ⊕Λ3
48 ⊕ Va112, T ⊗Λ4

27
∼= Λ3

48 ⊕ V168,

T ⊗Λ3
48

∼= Λ4
35 ⊕Λ2

21 ⊕Λ2
7 ⊕Λ4

27 ⊕ V105 ⊕ V189,

T ⊗Λ4
35

∼= T ⊕Λ3
48 ⊕ Va112 ⊕ Vb112. (13)

There are two 112-dimensional irreducible Spin7-representation, which we denote with Va112
and Vb112. In terms of fundamental weights, the representations appearing in the above decompo-
sitions are given as follows:

Λ2
7 = Γ1,0,0, Λ2

21 = Γ0,1,0, Λ3
48 = Γ1,0,1, Λ4

27 = Γ2,0,0, Λ4
35 = Γ0,0,2,

V a112 = Γ0,1,1, V b112 = Γ0,0,3, V168 = Γ2,0,1, V105 = Γ1,1,0, V189 = Γ1,0,2.

Next, we have to calculate all the necessary Casimir eigenvalues. We choose on spin7 an
invariant scalar product g0 such that the weights e1, e2, e3 form an orthonormal base of the Lie
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algebra of the maximal torus, which is identified with R
3. As in the G2-case, we compute the

Casimir eigenvalues using formula (9) and Lemma 3.10. However, in this case we have to take
V = Γ1,0,0 = Λ2

7, leading to cΛ
2

V = −6 and:

cΛ
2

Λ2
21

= −10, cΛ
2

T = − 21
4 , cΛ

2

Λ4
27

= −14, cΛ
2

Λ4
35

= −12, cΛ
2

Λ3
48

= − 49
4 ,

cΛ
2

Va112
= − 69

4 , cΛ
2

V105
= −18, cΛ

2

V189
= −20, cΛ

2

V168
= − 85

4 , cΛ
2

Vb112
= − 81

4 .

Finally, we use (7) to compute the coefficients of the Weitzenböck formula on the bundles
Λ2

21,Λ
3
48,Λ

4
27 and Λ4

35. As in the G2-case, we number the operators Ti corresponding to the
decomposition (13), e.g. for the representation Λ2

21 the operator T1 denotes the projection of the
covariant derivative onto the summand T and for the representation Λ3

48 it denotes the projection
of the covariant derivative onto the summand Λ4

35.

Proposition 3.12. Let {Ti} be the operators defined corresponding to the decompositions in (13).
Then, the following Weitzenböck formulas hold:

on Λ2
21 : q(R) = 5T ∗

1 T1 + 3
2T

∗
2 T2 − T ∗

3 T3,

on Λ3
48 : q(R) = 11

4 T
∗
1 T1 + 15

4 T
∗
2 T2 + 23

4 T
∗
3 T3 + 7

4T
∗
4 T4 − 1

4T
∗
5 T5 − 5

4T
∗
6 T6,

on Λ4
27 : q(R) = 7

2T
∗
1 T1 − T ∗

2 T2, on Λ4
35 : q(R) = 6T ∗

1 T1 + 5
2T

∗
2 T2 − 3

2T
∗
4 T4.

4. Proof of the theorems

In this section, we will prove Theorems 1.1 and 1.2 using the Weitzenböck formulas of
Proposition 3.11 and 3.12. We will first show that on manifolds with holonomy G2 and Spin7
any Killing form can be decomposed into a sum of Killing forms belonging to the parallel sub-
bundles of the form bundle. Hence, we may assume that the Killing form is a section of one of
the irreducible components. The Weitenzböck formulas will then imply that all twistor operators
vanish on the given Killing form, i.e. all components of the covariant derivative are zero and the
Killing form has to be parallel. The statement for ∗-Killing forms is proved in a similar way.

4.1. The holonomy decomposition

Let (Mn, g) be a manifold with holonomy G, which is assumed to be a proper subgroup of
SOn. In this situation, the bundle of p-forms decomposes into a sum of parallel sub-bundles,
ΛpTM = ⊕Vi and correspondingly, any p-form u has a holonomy decomposition u = ∑

ui.
If u is a twistor form, or even a Killing form, it remains in general not true for the holonomy
components ui. Nevertheless, we have such a property in the case of the exceptional holonomies.

Lemma 4.1. Let (M,g) be a compact manifold with holonomyG2 or Spin7 and let u be any form
with holonomy decomposition u = ∑

ui. Then, u is a Killing form or a ∗-Killing form if and only
if the same is true for all components ui.

Proof. We will use the characterization of Killing forms given in Proposition 2.2. Since the
decomposition ΛpTM = ⊕Vi is parallel, it is preserved by ∇∗∇ and q(R). Thus, for a Killing
p-form u all its holonomy components satisfy the equation ∇∗∇ui = 1

p
q(R)ui and it remains to

verify whether the components are coclosed.
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We start with the G2-case and consider a Killing 2-form u with holonomy decomposition
u = u7 + u14 according to (10). Since q(R) acts as Ricci curvature on Λ2

7, which vanishes for
G2-manifolds we have that ∇∗∇u7 = 0. Hence, u7 is parallel and in particular coclosed. The
same is then true for u14 = u− u7. In the case of a Killing 3-form, we have the decomposition
u = u1 + u7 + u27 and, as for 2-forms, it follows that u1 and u7 have to be parallel, implying that
u27 is coclosed. The argument is the same for Killing forms in degrees 4 and 5, since the same
representations are involved. Finally, the proof for ∗-Killing forms follows from the duality under
the Hodge star operator.

We, now, turn to the case of holonomy Spin7. Let u be a 2-form with holonomy decomposition
u = u7 + u21 or a 3-form with holonomy decomposition u = u8 + u48 according to (12). We
showed in Proposition 2.4 that q(R) acts trivially on u7 and u8. Thus, for a Killing form u these
components are parallel and it follows, as in the G2-case, that also the components u21 and u48
have to be coclosed.

It remains to consider the case of 4-forms. Here, it follows from Proposition 2.2 that a twistor
4-form u is characterized by the equation ∇∗∇u = 1

4q(R)u. Hence, all holonomy components of
a twistor 4-form are again twistor 4-forms. Below, we will show that any twistor form inΛ4

27 has
to be parallel. But then a Killing 4-form has three parallel holonomy components, implying as
above that the fourth component has to be coclosed as well. �

4.2. Twistor forms on G2-manifolds

In this section, we will show that any Killing or ∗-Killing form u on a compact mani-
fold of holonomy G2 has to be parallel. By Lemma 4.1, we may assume that u is a sec-
tion of one of the parallel sub-bundles of the form bundle. Moreover, we know already from
Proposition 2.3 that every Killing or ∗-Killing form in a sub-bundle where q(R) acts trivially
has to be parallel. Hence, it remains to consider Killing or ∗-Killing forms in the sub-bundles
Λ2

14 and Λ3
27. According to the decomposition (11), we have three operators Ti in the first

case and five in the second. We will show that for a Killing or ∗-Killing form all these op-
erators have to vanish, such that the form has to be parallel. Some of the operators Ti vanish
because of the twistor form condition, some since the form is assumed to be closed or co-
closed and the remaining operators vanish because of the Weitzenböck formula of Proposition
3.11.

(1) The case Λ2
14. The operator T3 (with numeration according to decomposition (11)) vanishes

on twistor forms, since the third summand V64 belongs neither to Λ1 nor to Λ3. Moreover,
the differential splits as d = d7 + d27, e.g. d7 = ∑

(ei ∧ ∇ei )7, with subscripts denoting the
projection onto the corresponding summand. There is no part d1, since the trivial representa-
tion does not occur in the decomposition of T ⊗Λ2

14. The projection pr1 defining T1 can be
written in two ways:

pr1 : T ⊗Λ2
14

π1→ T
j1→ T ⊗Λ2

14, pr1 : T ⊗Λ2
14

π2→Λ3
7
j2→ T ⊗Λ2

14,

with π1(X⊗ α) = X �α and π2(X⊗ α) = (X ∧ α)7, and the suitable right inverses j1, j2.
Hence, du = 0 or d∗u = 0 both imply T1u = 0. Similarly, du = 0 implies T2u = 0.

Let u be a ∗-Killing form in Λ2
14, then, du = 0 implies T1u = 0 and T2u = 0. Hence,

all twistor operators vanish on u and the form has to be parallel. Let u be a Killing form
in Λ2

14, then, only the component T2u could be different from 0. But, the Weitzenböck
formula of Proposition 3.11 and the equation, 2∇∗∇u = q(R)u imply 0 = 2∇∗∇u− q(R)u
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= (2 − 4
3 )T ∗

2 T2u. Hence, T ∗
2 T2u = 0, and after integration also T2u = 0, i.e. the form u has

to be parallel.
(2) The caseΛ3

27. Here, the operators T4 and T5 vanish on twistor forms, since the summands V64
andV−

77 of the decomposition (11) do not appear in the form spaces. Moreover, the differential
splits as d = d7 + d27 and the codifferential as d∗ = d∗

7 + d∗
14, again there is no component

d1. With the same arguments as forΛ2
14 we see that du = 0 implies T1u = 0 and T2u = 0 and

d∗u = 0 implies T1u = 0 and T3u = 0. Indeed, the first two summands of the decomposition
(11) of T ⊗Λ3

27 are also summands of the 4-forms. Similarly, the first and the third summand
are components of the 2-forms.

Let u be Killing form in Λ3
27, then only T2u could be different from zero. But, the

Weitzenböck formula and the equation 3∇∗∇u = q(R)u implies (3 − 2)T ∗
2 T2u = 0 and u

again has to be parallel. Finally, in the case of a ∗-Killing form u in Λ3
27, we have to

use the Weitzenböck formula and the equation 4∇∗∇u = q(R)u to show the vanishing
of T3u.

Remark 4.2. Using Lemma 3.2 and an explicit expressions for the projections onto the irreducible
components of the form bundle it is possible to determine the precise relation between the operators
T ∗
i Ti and similar operators in terms of the components of d and d∗, e.g. on the bundle Λ2

14 one
finds: d∗

7d7 = T ∗
1 T1, dd∗ = 4T ∗

1 T1 and 3d∗
27d27 = 7T ∗

2 T2.

4.3. Twistor forms on Spin7-manifolds

In this section, we will show that any Killing or ∗-Killing form u on a compact manifold of
holonomy Spin7 has to be parallel. Again, we may assume that u is a section of one of the parallel
sub-bundles of the form bundle and we know already that every Killing or ∗-Killing form in a
sub-bundle where q(R) acts trivially has to be parallel. Hence, it remains in this case to consider
Killing or ∗-Killing forms in the sub-bundlesΛ2

21,Λ
3
48,Λ

4
27 andΛ4

35. The argument is now similar
to the G2-case. For any Killing or ∗-Killing form u in one of these bundles, we show that all the
operators Ti vanish on u, such that the form has to be parallel. In the Spin7-case, the operators Ti
are numbered according to the decomposition (13).

(1) The case Λ2
21. According to the decomposition (13), we have three operators Ti in this case

and T3 vanishes on twistor forms since the third summand Va112 belongs neither to Λ1 nor to
Λ3. The representation T ∼= Λ1 appears also as summand in the 3-forms. Hence, as in the
G2-case, we see that du = 0 implies T1u = T2u = 0 and d∗u = 0 implies T1u = 0. Thus,
∗-Killing forms are automatically parallel. Let u be a Killing 2-form, then, 2∇∗∇u = q(R)u
and the Weitzenböck formula of Proposition 3.12 imply (2 − 3

2 )T ∗
2 T2u and T2u = 0. Thus,

also, on Killing forms all operators Ti vanish.
(2) The case Λ3

48. Here, we have six operators Ti and T5, T6 vanish on twistor forms since the
corresponding summands V105 and V189 belong neither to Λ2 nor to Λ4. The representation
Λ2

7, i.e. the third summand in the decomposition (13) of T ⊗Λ3
48, appears as summand in the

2- and 4-forms. Hence, du = 0 implies T1u = T3u = T4u = 0 and d∗u = 0 implies T2u =
T3u = 0. Let u be a ∗-Killing form, then, 5∇∗∇u = q(R)u and we find (5 − 15

4 )T ∗
2 T2u = 0,

thus, T2u = 0. Let u be a Killing form, then, 3∇∗∇u = q(R)u and (3 − 11
4 )T ∗

1 T1 + (3 −
7
4 )T ∗

4 T4u = 0 implies T1u = T4u = 0.
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(3) The case Λ4
27. Here, we have the operators T1 and T2 and, as above, T2 vanishes on

twistor forms. Let u be a twistor 4-form, i.e. T2u = 0. Then, 4∇∗∇u = q(R)u implies
(4 − 7

2 )T ∗
1 T1u = 0 and, thus, T1u = 0. Hence, any twistor 4-form in Λ4

27 has to be paral-
lel, which completes the proof Lemma 4.1. Indeed, we had already seen that any holonomy
component of a twistor 4-form is again a twistor form. Now, we see that three of the four
components have to be parallel. Hence, for a Killing form all components are again coclosed,
i.e. again Killing forms.

(4) The caseΛ4
35. Here, we have four operators Ti and T3, T4 vanish on twistor forms. Since both

remaining summands T and Λ3
48 are sub-bundles of Λ3 ∼= Λ5 we see that T1 and T2 vanish

for closed or coclosed twistor forms, thus, they have to be parallel.

Remark 4.3. For the representationΛ4
35, we find in Ref. [15] an additional Weitzenböck formula

(with vanishing curvature term). This equation, then, shows that even any twistor 4-form on a
Spin7-manifold has to be parallel.

4.4. Twistor forms

In this last section, we will prove the more general statements on twistor forms, contained in
Theorems 1.1 and 1.2.

It follows from Proposition 2.4 that on a compact G2 or Spin7 manifold any twistor 1-form,
i.e. any conformal vector field, has to be parallel. Applying the Hodge star operator, we obtain
that any twistor form of degree 6 resp. 7 has to be parallel.

Moreover, it is easy to show that on Einstein manifolds, and in particular on Ricci-flat manifolds,
the codifferential of any twistor 2-form is either zero or dual to a Killing vector field. Hence, on
a compact G2 or Spin7 manifold any twistor 2-form has to be coclosed and then also parallel.
Applying again the Hodge star operator shows that any twistor form in degree 5 resp. 6 has to be
parallel.

Summarizing, we note that arguments presented so for do not exclude the possibility of non-
parallel twistor forms in degrees 3 and 4 for the G2-case and in degrees 3–5 in the Spin7-case.
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